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Abstract—Rdndom projection is a popular machine learning algorithm which can be trained with a very efficient manner. However, the
number of features should be large enough when applied to a rather large scale dataset, which results in slow speed in testing
procedure. Furthermore, some of the features are redundant and even noisy since they are randomly generated, so the performance
may be affected by these features. To remedy these problems, an effective feature selection method is proposed to select useful
features hierarchically. The training time and accuracy of the proposed method are improved compared with traditional methods and
some variations on both classification and regression tasks. Extensive experiments confirm the effectiveness of the proposed method.

F

1 INTRODUCTION

N EURAL networks have been proved to be effective in solving
tasks like object detection [1] and scene classification [2].

Gradient decent (GD) algorithm [3] and its variants are the most
widely adopted methods used in the learning of neural networks.
However, GD algorithms need to tune parameters iteratively,
which makes the training of neural networks very slow especially
on some large scale datasets.

ELM [4] is a single layer network which can be efficiently
trained with a closed-form solution. It has been utilized in many
applications and confirmed to be efficient in training and has
good performance based on some small datasets. However, more
hidden neurons are necessary when ELM is applied on rather large
datasets since the weights of neurons are randomly generated.
Under this circumstance, the training of ELM is rather slow as a
large matrix reversion problem should be solved. Furthermore, the
selection of neurons can be seen as a random projection, in which
redundant and noisy features might affect the final performance
and slow down the testing speed.

In order to select useful features in ELM, some algorithms are
proposed to prune redundant features. Pruned-ELM [5] utilizes
statistical methods as measurements of the relevance between
hidden nodes and class labels, in which the relevant nodes are
removed to achieve compact networks and robust performance.
This method is faster than the original ELM in training, but
it can only be applied on classification problems. OP-ELM [6]
is proposed to rank neurons by multiresponse sparse regression
(MRSR) algorithm, and then select useful features through leave-
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Fig. 1. The pipeline of the proposed hierarchical feature selection
method. In this figure, each node represents a feature. The feature pool
which contains 24 features is split into 4 groups. For each group, half
of the features are selected each time. Then, a new feature pool which
contains 12 features is generated. Finally, a compact network contains
only 6 features are constructed. Note that, darker nodes indicate the
features have higher weights.

one-out (LOO) validation. It can be used in both classification and
regression tasks, but the training speed is slower than the original
ELM. To accelerate the training of ELM for both classification and
regression tasks, a hierarchical feature selection method (abbrevi-
ated as HFS-ELM) is proposed in which a very simple yet efficient
criteria is utilized to determine the usefulness of features. To
further accelerate the training procedure, a hierarchical selection
scheme is also presented. Through our experiments, this method
can achieve superior performance than ELM and some widely
used classification methods with faster testing speed. And it can
be used in both classification and regression tasks.

The contributions of this paper are summarized as follows:

1. A simple yet efficient feature selection method is proposed
to select useful features generated by ELM. The criteria used
for ranking the usefulness of features, which is based on the
value of output weights is very easy to calculate and effective
to eliminate redundant and noisy features.

2. A hierarchical selection scheme is proposed to choose
useful features in a very efficient manner. To accelerate the
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training of ELM on large scale datasets, useful features are
selected hierarchically, which avoids the selection from the
whole feature pool. Therefore,the large matrix reversion is
evaded which largely accelerates the training of ELM.

3. Extensive experiments are performed on a variety of
datasets including both classification and regression tasks
and confirm the effectiveness and efficiency of the proposed
method.

2 RELATED WORKS

In this section, we briefly review the compression algorithms
based on ELM which can be divided in 2 categories.

The first type of algorithms perform network compression be-
fore or during the learning of output weights (i.e. matrix reversion
calculation) which is faster in training than the original ELM since
the matrix reversion is performed on a smaller matrix. EI-ELM [7]
is proposed to incrementally add features from a candidate pool
during the training process in which the feature that results in
larger error decreasing will be appended to the existing network.
In Bidirectional ELM [8], the relationship between a newly added
feature and residual error is presented so that the weight of new
feature can be calculated efficiently. A pruned-ELM (P-ELM) [5]
is proposed to evaluate the relevance between features and class
labels, in which the irrelevant features are pruned to generate
a compact network. Another pruned method [9] is proposed
which utilizes the defined sensitivities to determine the necessary
features. To remedy overfitting problem and generate compact
network, Sparse Bayesian ELM (SBELM) [10] is proposed to
learn sparse weights by Bayesian Inference, in which the features
with 0 weight can be pruned.

Another type of methods are proposed to select useful features
based on the results of the original ELM, which means that the
training is longer than the original ELM. OP-ELM [6] which
utilizes MRSR and LOO validation to determine the usefulness
of features can generate very compact network than the original
ELM with comparable performance. Parsimonious ELM [11] is
proposed to rank and select significant features based on par-
tial orthogonal decomposition through recursive orthogonal least
squares method.

3 EXTREME LEARNING MACHINE

ELM is a very fast algorithm since the learning procedure don’t
need iterative optimization of parameters. The learning of ELM is
rather simple. First of all, the weights and bias of input weights
of the hidden layer is randomly assigned. Then, the output weight
of ELM is calculated to minimize the mean squared error between
the ground truth and the prediction.

Formally, in a single hidden layer neural network with N
nodes, the output label y with respect to a d dimensional input
vector x is denoted as:

y =

N∑
i=1

βihi(x), (1)

where βi is the weight of the i-th node, and h(x) indicates the
non-linear feature mapping which can be written as:

hi(x) = θ(aix+ bi), (2)

where ai, bi are randomly assigned parameters and θ can be
any non-linear mapping function like Sigmoid function, Gaussian
function or Cosine function.

(a) Classification (b) Regression

Fig. 2. The relationship between output weights and the performance of
ELM. In this figure, the horizontal axis is the values of the output weight
in ascending order. The vertical axis is the accuracy or mean squared
error. (a) The classification accuracy is proportional to the output weight.
(b) The regression error is inversely proportional to the output weight.

Fig. 3. The comparison of ELM and ELM with feature selection on clas-
sification task. The horizontal axis is the number of features randomly
generated or selected from a feature pool with 500 features. The vertical
axis is classification accuracy.

In this model, the only unknown parameter is β which can be
learned by minimizing the mean squared error between the ground
truth and the prediction:

β = min
β
‖Hβ −G‖2, (3)

where ‖ · ‖ denotes the Frobenius norm and H is the output of
hidden layer with randomly assigned parameters:

H =


h(x1)
h(x2)

...
h(xd)

 =


h1(x1) h2(x1) . . . hN (x1)
h1(x2) h2(x2) . . . hN (x2)

...
...

. . .
...

h1(xd) h2(xd) . . . hN (xd)

 , (4)

and G is the ground truth matrix. If ELM is performed on a
regression problem where the output target is a real value, G could
be a vector:

G = [g1, g2, · · · , gn]>, (5)

otherwise G is a matrix representing category labels in classifica-
tion problems.

The optimization of Equation 3 is very efficient since it has a
closed-form solution:

β∗ = H†T. (6)

Since it has no iteration steps, the optimization of ELM is very
efficient especially when performed on a small dataset in which
the number and dimension of training samples are small. Under
this condition, a small number of hidden nodes are necessary to
obtain good performance so the matrix reversion can be easily
calculated. However, large amount of hidden nodes is usually
needed to guarantee performance on large scale datasets, because
the matrix reversion is performed on a large matrix, the calculation
of which is often time-consuming.
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(a) dig (b) msra

(c) palm (d) tdt10

(e) text (f) usps

Fig. 4. The experimental results regarding to how many features should
be remained in each selection procedure on different datasets. In this
figure, horizontal axis is the ratio of remained features in selection proce-
dure. The vertical axis is accuracy. Different lines represent performance
of HFS-ELM with different number of final remained features.

4 HIERARCHICAL FEATURE SELECTION

In order to alleviate redundant features and avoid large matrix re-
version, in this paper, a very simple yet effective feature selection
method is proposed to hierarchically choose significant features
in large amount of randomly generated features. In particular,
the first step of the proposed method is to generate features
randomly. Then, the features are split into several groups. For
each group of the features, the original ELM is performed to learn
output weights which can be utilized to evaluate the importance
of features. Specifically, larger weight indicates that the feature
is more important, thus the features can be ranked based on the
weights of them. After the ranking and selection of features, all
of them chosen from different groups are aggregated together.
The selection procedure is performed several times hierarchically,
and a very compact yet effective network can be generated from
numerous features very efficiently.

Since the input weight of hidden neurons is randomly as-
signed, it can be seen as random projection in which many
redundant features might be yielded during the training process
when a good performance is achieved. To relieve this problem,
a simple criteria for feature selection is proposed to rank and
choose features based on the output weight which can be utilized
to evaluate the importance of features. Particularly, after the
learning of the original ELM, the output weight β is obtained by
calculating Equation 6. As shown in experiments, the features with
larger absolute value have higher probability to generate better
performance. So, the output weights are sorted in descending
order:

I = sort index(norm(β)), (7)

where norm() is a function that calculate the norm of
β1, β2, · · · βn independently. sort index() is used to rank the
norm of weight in descending order and obtain the index I . After
the importance of features is ranked, a subset of feature can be
selected through index I . Proved by experiments, this method is
very effective to prune redundant and noisy features and generate
better performance than the original ELM. However, the training
time is increased especially when the feature pool is large as
the calculation of output weight needs to solve a larger matrix
inversion problem than the original ELM.

(a) dig (b) msra

(c) palm (d) tdt10

(e) text (f) usps

Fig. 5. The experimental results about the number of layers in the
selection scheme and the size of features remained at last on different
datasets. In the figures, the horizontal axis is number of final remained
features and the vertical axis is accuracy. Different lines represent the
performance of HFS-ELM with different selection layers.

To accelerate the training of ELM by avoiding large matrix
inversion, a hierarchical selection strategy is proposed. First of
all, numerous features are randomly generated to serve as the
feature pool. Then, features in the pool are split into several
groups on which the feature selection procedure is performed.
To obtain more compact network, the same feature selection can
be performed on the selected features which forms a hierarchical
scheme.

Although there are some parameters which will affect the
performance and efficiency of the proposed method, they are
not very sensitive to different datasets. In experiments, some
parameters can be used to both classification and regression tasks
over different datasets. The parameters are summarized as follows
and the selection of them are investigated in experiments.

1. The first parameter that we should determine is the ratio
of remained features in selection procedure since large ratio
tends to yield better performance but the training speed are
limited while small ratio based algorithm can be trained more
efficiently. A proper ratio can yield good performance and
fast training speed at the same time.
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(a) NWPU Cong (b) abalone

(c) cpusmall (d) mg

(e) space ga

Fig. 6. The experimental results about how many layers the selection
procedure should include on different datasets. In the figures, the hori-
zontal axis is the number of final remained features and the vertical axis
is accuracy. Different lines represent the performance of hierarchical
feature selection with HFS-ELM with different selection layers.

2. The final size of selected features is a factor that affect
performance and the testing speed of the algorithm. A large
number of final features will yield better performance while a
small number of features will be faster in training and testing.

3. Based on the ratio in feature selection procedure and the
final remained number of features, the size of feature pool
can be determined by the number of layers in hierarchical
selection scheme. The more the number of layers, the larger
the feature pool. A large feature pool can produce better
performance at the most of the time. However, the training
speed will increase a lot if hierarchical selection procedure
with more layers are performed during training.

The proposed hierarchical feature selection method is summa-
rized in Algorithm 1.

TABLE 1
The detailed information of evaluated datasets for classification.

size of dataset dimension
dig 1797 64
msra 1799 25
palm 2000 256
tdt10 653 36771
text 1946 7511
usps 9298 256

5 EXPERIMENTAL RESULTS AND DISCUSSION

To confirm the efficiency of the proposed method, extensive
experiments are conducted. Through the experimental results, we
find that the efficiency of ELM can be largely improved with

Algorithm 1 Hierarchical Feature Selection for Extreme Learning
Machine
Require: X ∈ <n×d: the training features

Y ∈ <n×1: the training labels
S: the size of feature pool
s: the size of each group
r: the ratio of selected features from each group

// for each node
for i = 1, 2, ..., S do

Randomly assign parameters a(i), b(i)

end for
//Suppose the hierarchical scheme has three layers
for i = 1, 2, 3 do

// Split features in pool into groups with size s
for each group do

Compute matrix H through Equation 2
Calculate βj through Equation 6
Rank features’ importance through Equation 7
Select features based on r and the ranking result

end for
Merge all selected features into a new feature pool

end for
Compute βf of the final selected features by Equation 6

Ensure: Final selected features and the corresponding βf

comparable performance, so that the proposed method can be used
for rather large datasets. In this section, some experiments are
first conducted to prove that the feature with larger output weight
has higher probability to generate better performance. Then, the
performance and efficiency of the proposed method is evaluated
on both classification and regression tasks.

5.1 Why the proposed method is working?

Empirically, features which have larger weights tend to generate
better performance since large weights indicate the significance
of features. To prove this idea, some experiments are conducted,
including classification and regression tasks.

In particular, we randomly generate some ELM with only
one neuron and calculate the corresponding output weight and
accuracy/MSE (mean squared error). Then, these trained ELMs
are ranked by the value of their output weights. The relationship
of the output weight and performance is thus shown in Figure
2. In this figure, the classification accuracy is proportional to the
output weight and the regression error is inversely proportional
to the weight which indicates that the larger weight has higher
probability to yield better performance in both classification and
regression tasks.

To further confirm the effectiveness of feature selection, the
performance of ELM is compared with the performance of ELM
with feature selection. In details, the original ELM is compared
with the ELM with same number of neurons which have rather
higher output weights selected from a feature pool with 500
neurons. The experimental result is shown in Figure 3 in which
the classification accuracy of ELMs with neurons selected from
feature pool is higher than the ELMs with randomly generated
neurons. The experimental result indicates that the ELMs with
selected neurons always have better performance.
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TABLE 2
Comparison of different methods on classification tasks. The best results are indicated in bold.

SVM Adaboost ELM HFS-ELM
accuracy testing time accuracy testing time accuracy testing time accuracy testing time

dig 97.96% 0.039 95.34% 0.088 96.98% 0.053 97.20% 0.028
msra 99.85% 0.093 99.27% 0.142 99.61% 0.130 99.94% 0.057
palm 99.60% 0.020 96.50% 0.060 99.00% 0.049 99.80% 0.02
tdt 97.57% 1.283 97.71% 1.193 98.21% 0.033 99.17% 0.030
text 96.92% 5.464 94.60% 0.764 93.93% 2.496 95.29% 1.676
usps 94.95% 0.997 91.84% 0.358 96.74% 0.334 96.51% 0.172

TABLE 3
The detailed information of datasets fro regression.

size of dataset dimension
NWPU Cong 5585 10
abalone 4177 8
cpusmall 8192 12
mg 1385 6
space ga 3107 6

(a) NWPU Cong (b) abalone

(c) cpusmall (d) mg

(e) space ga

Fig. 7. The experimental results about how many features should be
remained on different datasets. In this figure, the horizontal axis is
the ratio of remained features in selection procedure. The vertical axis
is accuracy. Different lines represent performance of HFS-ELM with
different number of final remained features.

5.2 HFS-ELM for Classification

Classification is one of the fundamental problems in Artificial
Intelligence. To assess the efficiency of the proposed method, 3
popular classifiers (ELM, SVM, and Adaboost) are included for
comparison on several widely used benchmarks (dig [12], msra
[13], palm [14], tdt10 [15], text [16] and usps [17]) that the
detailed information is concluded in Table 1.

We first investigate three hyper-parameters that should be
considered: how many features should be remained when we

select useful features, how many features should be remained
at last and the number of layers in hierarchical scheme. The
first parameter is the number of features selected each time.
Based on the aforementioned declaration that it is the trade-
off between the performance and efficiency, the performance of
ELM with different compression level is compared, to find out a
proper number that can maximumly compress the network without
much performance decrease. The experimental results are shown
in Figure 7 in which we can see that the performance can be
guaranteed with a rather high compression degree when ratio
equals to 0.5 over most of the datasets. Thus, ratio is set as 0.5 in
the following experiments.

The number of final remained features and the number of
layers are explored at the same time. The ELMs with different
layers and remained features are trained and compared in the
experiment. The results are shown in Figure 5. In this figure,
we can see that a 2 layers selection scheme can not achieve the
best or comparable results than a 3 layers or 4 layers selection
scheme. And a 4 layers selection method may generate unstable
performance on some datasets like dig or may cause overfitting on
usps. Thus, the number of layers of hierarchical scheme is set as
3 in the following experiments.

Table 2 shows the experimental results regarding to the
comparison of some widely used classification algorithms. The
proposed method is the most efficient one of all compared algo-
rithms with comparable classification performance since the hier-
archical feature selection can prune redundant and noisy features
effectively and generate more compact networks. Comparing the
proposed algorithm with the original ELM, better performance can
be obtained with more compact networks and faster testing speed,
which proves that the effectiveness of the proposed hierarchical
selection method.

5.3 HFS-ELM for Regression

In this section, the performance and efficiency of the proposed
method is evaluated on regression tasks. Specifically, the proposed
algorithm (HFS-ELM) is compared with Adaboost, OPELM and
ELM. The detailed information of datasets (abalone [18] cpus-
mall1, mg [19], space ga [20]) can be seen in Table 3. Most of
these datasets are come from UCI repository and the NWPU Cong
dataset [21] is a real world congestion detection dataset. Note
that, the mean squared error (MSE) is utilized to evaluate the
performance of regression.

Similar to the experiments in classification tasks, the param-
eters are first exploited. We find that the ratio can be set as 0.5
over both classification and regression tasks, as shown in Figure

1. http://www.cs.toronto.edu/ delve/data/datasets.html



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

TABLE 4
Comparison of different methods on regression tasks. The best results are indicated in bold.

Adaboost OPELM ELM HFS-ELM
MSE testing time MSE testing time MSE testing time MSE testing time

NWPU Cong 0.021 0.038 0.026 0.019 0.029 0.026 0.029 0.014
abalone 7.864 0.020 5.610 0.010 5.250 0.012 4.482 0.006
cpusmall 13.75 0.041 17.27 0.02 11.99 0.02 11.52 0.02
mg 0.024 0.020 0.015 0.0064 0.0153 0.0060 0.015 0.004
space ga 0.019 0.024 0.013 0.005 0.012 0.005 0.012 0.004

7, a smaller ratio may cause worse performance on most of the
dataset while a larger ration may cause overfitting on abalone and
space datasets. The number of layers can be set as 2 or 3 based
on the results shown in Figure 6 that only 4 layers scheme may
cause overfitting on abalone dataset. Since the size of regression
datasets is rather small, a 4 layers selection scheme is far enough
to fit training data. However, overfitting is occurred on only one
dataset which confirms that the proposed method is very robust to
avoid overfitting.

The experimental results are summarized in Table 4. In most
cases, the proposed method achieves superior performance than
others. What’s more, the testing time is always shorter than others
which confirmed the proposed selection criteria is very effective
to compress network by avoid redundant and noisy features.

6 CONCLUSION AND FUTURE WORKS

To improve the speed of the original ELM through pruning
redundant and noisy features in single layer neural networks, a
hierarchical feature selection method is proposed. The selection
method which can be used to select useful features from feature
pool is based on a simple but effective criteria regarding to
the value of the learned weight. Based on the selection criteria,
a hierarchical selection scheme is proposed to accelerate the
efficiency of the algorithm. Utilizing hierarchical feature selection
in ELM, very compact networks can be generated which have
comparable performance with some widely used algorithms in
classification tasks and better results than traditional methods in
regression tasks. And the testing speed has shown its priority in
both classification and regression tasks.

Although both performance and speed are improved based on
proposed method, it can be further improved by automatically esti-
mating hyper-parameters like the layer of the hierarchical scheme.
In the future, adaptive parameter selection methods should be
exploited.
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